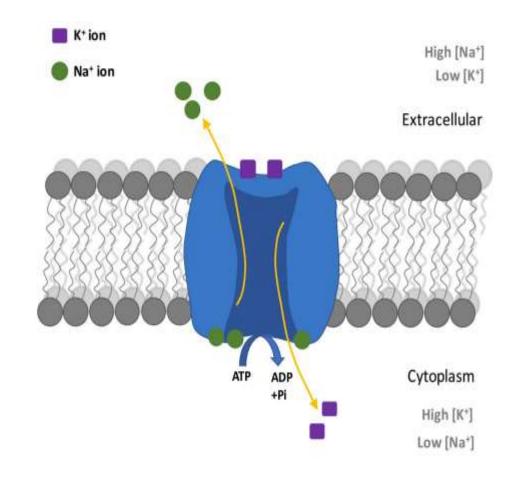
# HYPONATREMIA CASE SENARIOS

DR VIDHYA, DR SUNIL REDDY

#### 1. PHYSIOLOGY OF Na HOMEOSTASIS:


- Sodium and Its distribution
- Intake and excretion
- Role of Volume and osmolality in Na regulation
- Types of hyponatremia, is everything the same?

#### 2. CORRECTING HYPONATREMIA

## Sodium and Its distribution

- Sodium is the major extracellular cation,
- 135-145 mEq/L extracellular fluid.





#### Intake and Excretion

- Sodium intake: Infants receive sodium from breast milk (7 mEq/L) and formula (7-13 mEq/L).
- An average Indian consumes 10.98 grams of salt per day -- 119 % > recommended (1 g NaCl = 394 mg, 17 mEq or 17 mmol of Na and Cl).
- Excretion: Occurs through urine, stools and skin.
- Sodium intake is now recommended not to take > 2500 mg/day.

# Volume and osmolarlity

- The normal osmolality of both intracellular and extracellular fluid is 285-295 mOsm/Kg of water.
- Since sodium is the predominant extracellular cation, sodium salts account for the major portion, approximately 86% of extracellular fluid osmolality.
- In contrast, potassium salts account for the major portion of intracellular osmolality.
- (Serum osmolality = 2 x Na+ Glucose/18+ BUN/2.8)

## Concept.....

- Control: Body sodium content is most intimately coupled with extracellular
  - wat
- Wat Whosm
- If S. Na is falling, effort to excrete ECF water is initiated.....
- If S. Na is raising, effort to conserve ECF water is initiated.....
- Dui

and consequent renal water excretion leads to an increase in the sodium concentration.

on,

# What is the priority in a conflicting situation?

- Correction of volume depletion takes priority over osmolality.
- Volume depletion stimulates ADH secretion even when there is hyponatremia. E.g. Hyponatremic dehydration in acute diarrhea.
- Once dehydration is corrected, ADH is switched off, water retention ceases and serum sodium levels raises.

| HYPOVOLEMIC HYPONATREMIA                                                                                                                                                                                      | EUVOLEMIC HYPONATREMIA                                                                                                             | HYPERVOLEMIC HYPONATREMIA                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Na (↓↓) Water (↓)                                                                                                                                                                                             | Water ( ↑)                                                                                                                         | Na (↑↑) Water (↑)                                                                                                                                                               |
| Causes  1.Extrarenal loss ( U Na < 20mmol/L) Vomiting, diarrhea  2. Renal Loss ( U Na >20mmol/L)  • RTA, Cerebral salt wasting  • DKA  • Diuretic therapy,  • Adrenal insufficiency  • Pseudohypoaldosternism | Causes  1. Water intoxication  Use of 5% Dextrose in post operative Period,  Psychogenic water drinking,  Tap water enema  2.SIADH | Causes  1.Renal failure  ( U Na > 40 mmol/L)  All others (U Na < 20 mmol/L)  2.Nephrotic syndrome  3.Congestive heart failure  4.Protein energy malnutrition  5.Cirrhosis liver |

#### HYPONATREMIA MANAGEMENT

# HYPOVOLEMIC (Dehydrated)

**EUVOLEMIC** (No edema and dehydration)

HYPERVOLEMIC (Edematous)

- Add water & Na
- Shock: Correction with
- RL/NS bolus
- Dehydration:
- Replace water and sodium Deficit + maintenance.

- Water restriction
- Severe, symptomatic 3 % saline 5 ml per kg,
   over 1- 2 hrs with
   diuretics
- Treat the underlying cause

- Restriction of water and Na
- Diuretics
- Treat the cause

## Case 1

- 1 year old male child (10kg)presented with complaints of diarrhea, and irritability for 1 days.
- He had an episode of GTCS is brought to emergency.
- How to treat this case?

### Examination.....

# Hypoxic cell edema is worsened by hyponatremia

elt.

- CRT 3-4 seconds peripheries were cool.
- Sunken eyes
- Skin turgor-mild delay in going back
- Oral mucosa- dry
- No Neck stiffness

**Bolus/oxygen** 

SOME
DEHYDRATION
HYPOVOLEMIA
SEIZURE

## Investigations sent....

- Glucose -90 mg/dL
- Urea- 34 mg/dL
- Creatinine 0.6 mg/dL
- Sodium 110 mEq/L
- Potassium 4.2 mEq/L
- Chloride 98 mEq/L
- Bicarbonate 21 mEq/L
- Ionised calcium 1.2 mmol/L
- Urine sodium levels? 13mEq/L



## Algorithmic approach to hyponatremia

- 1. Does the child have neurological symptoms? YES
- 2. True or pseudo hyponatremia? TRUE (Glucose 90, not lipemic, site opposite hand)
- 3. Volume status? HYPOVOLEMIA
- 4. Is it acute or chronic? < 48HRS ACUTE
- 5. Urine sodium levels? 13mEq/L (No renal wasting)

## Neurologically symptomatic child...

- Target is to increase of serum Na by +5 mEq/L
- What to use and how much? 3% saline 5 mL/Kg or NS 20 mL/kg

- A patient with severe symptoms (seizures) irrespective of the etiology, should be given a bolus of hypertonic saline to produce a small and rapid increase in serum sodium......WHY
- 1) Quickly reduce cerebral edema
- 2) poor response to anticonvulsants.
- So if ECF Osmolality is increased water moves down from ICS TO ECS.
- In Children central pontine myelinosis is very rare. And consequence of acute cerebral edema exceed small risk of central pontine myelinosis

- Avoid correcting serum Na by > 10 mEq/L/24hr or > 18mEq/L/48 hr.
- This guideline doesn't apply to acute hyponatremia as brain has not had time for adaptive decrease in osmolality.
- So a bolus with 3% Nacl to rapidly increase Serum Na by 5 mEq/L is given.
- 1ml/kg of 3% NaCl increases serum Na by 1 mEq/L.... SO A BOLUS OF 4-6ml/kg is needed.
- Both 3% saline 5 mL/Kg or NS 20 mL/kg 25-30 mEq of sodium and will raise by 5 mEq/L

#### No shock

#### With shock

- 1 bolus with 3% Nacl to raise the serum Na by 5 mEq/L (4-6ml/kg)
- Shift to normal saline for dehydrational correction( defecit + maintainence+ on going losses).
- Check Na values frequently

- Correct shock first with normal saline (boluses max upto 60ml/kg)
- Is shock corrected, is urine output present, recheck sodium and decide further

Correction goal is 125mEq/L

## Only hyponatremia and some dehydration....No seizure, shock

- Calculate volume: Deficit + Maintenance (600 + 1000 = 1600 mL)
- Replace as D5 NS with appropriate K
- Give half of total fluid (800ml) in 8 hrs and Second ½ (800ml) in next 16 hrs

Correct the dehydration, hyponatremia will get corrected by itself Clinically monitor, repeat electrolytes after 24 hrs.

If any new symptoms repeat Na at that point

### Our case......

- With 1 bolus of 3% NaCl (50ml) sodium level raised to 114 mEq/L.
- Started some dehydration correction with a goal of 125 mEq/L.
- Defecit ....6%= 600ml (300ml in 8 hrs and next 300 in 16hrs)
- Maintainence 100ml/kg/day = 1000ml
- At 12 hrs Serum Na ,119 mEq/L.
- At 24 hrs serum Na ,130 mEq/L.
- Stopped IV..... After 48 hrs Sodium 136 mEq/L
- Diarrhea subsided, hypovolemia resolvd sodium normalised... discharged

## Case 2

|                    | Intracellular (mEq/L) | Extracellular (mEq/L)                   |
|--------------------|-----------------------|-----------------------------------------|
| Na <sup>+</sup>    | 20                    | 133-145                                 |
| K+                 | 150                   | 3-5                                     |
| CI-                |                       | 98-110                                  |
| HCO <sub>3</sub>   | 10                    | 20-25                                   |
| PO <sub>4</sub> 3- | 110-115               | 5                                       |
| Protein            | 75                    | 10                                      |
| % Body weight      | 80                    | 15 (Interstitial);<br>5 (Intravascular) |

|                                    | No dehydration        | Some dehydration                 | Severe dehydration     |
|------------------------------------|-----------------------|----------------------------------|------------------------|
| Decrease in body weight            | <5% in infants;       | 5-10% in infants;                | >10% in infants;       |
| William Day mend or less           | <3% in older children | 3-6% in older children           | >6% in older children  |
| Mental status                      | Normal                | Irritable                        | Lethargic to comatose  |
| Thirst                             | Normal                | Increased                        | Unable to drink        |
| Skin color and elasticity (turgor) | Normal                | Cool, pale; mild delay in turgor | Cold, mottled; tenting |
| Sunken eyes                        | Normal and all        | Sunken                           | Very sunken            |
| Mucous membrane                    | Normal                | Dry                              | Very dry               |
| Pulse rate                         | Normal                | Slightly increased               | Tachycardia            |
| Capillary refill                   | 2-3 sec               | 3–4 sec                          | >4 sec                 |
| Blood pressure                     | Normal                | Normal                           | Normal or low          |
| Urine output                       | Slightly decreased    | Decreased                        | Oliguria, anuria       |